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Abstract

The question on which my extended essay is focused is: What role does mathematics,
particularly geometry and calculus, play in the projection of spherical surfaces onto
two-dimensional planes? What is the application of this in the real world?

In this essay I first define the appropriate properties and terminology of the sphere to set a
solid foundation for the more complex mathematics in later sections. I also introduce
relevant theorems along with an introduction into the various types of projection. To
discuss the mathematics of the projections themselves, I describe the projection process
of each projection, then walk through the geometry and calculus involved to translate
spherical coordinates on the three-dimensional plane into Cartesian coordinates on the
two-dimensional plane, effectively demonstrating the role that mathematics plays in
projection. For each projection, I also examine its properties and use my resulting
equations to exemplify a potential projection of a spherical point. To ensure that I have a
variety of examples, I discuss projections that preserve different characteristics of the
sphere’s surface, as well as both direct projection onto a two-dimensional plane and
projection first onto a three-dimensional surface before flattening.

I cultivate a higher understanding of the projection concept by underscoring and
justifying the various applications of them in the real world. I summarize these
applications in my conclusion, while also discussing the possible limitations of the
mathematics in this paper when it comes to applying it.
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1. Introduction
The significance of cartography to humankind can be exhibited by its history of more
than 5,000 years. Aside from their prominence in the advancement of navigation and
communication, maps have long been an outlet for human understanding of the
fascinating world around us on an otherwise intangible scale.

Even in the modern era, maps of all scales and sizes are often plastered across classroom
walls and used almost on a daily basis for basic navigation. Relevant in a scientific,
historic, and even artistic perspective, cartography is a powerful tool prevalent in the
lives of millions. Given this dually immense historical and modern-day significance of
cartography, it wasn’t long before I started to question the connection between our
three-dimensional, spheroid planet Earth and the flat, two-dimensional planes that maps
appear in. Surprisingly, the applications of calculus just above my current level are the
focus of much of the map projection process.

In this essay, I shall investigate the use of mathematics, particularly geometry and
calculus, in the projection of spherical surfaces onto two-dimensional surfaces. Relatedly,
I will explore the application of this projection process in the context of navigation,
cartography and map projection of the Earth.



2. The Sphere

2.1. Properties and Terminology
In order to assess the mathematics behind the projection of three-dimensional
spherical surfaces onto two-dimensional planes, it is first necessary to be
acquainted with the sphere and its properties. Throughout this paper, the unit
sphere, otherwise known as a locus of points of a constant distance of one unit
from a given origin on a three-dimensional plane, will be used as a model for
projection, along with terminology pertaining to the various properties of spheres.
Thus, we now introduce the relevant terminology.

A great circle is the intersection of a two-dimensional plane that passes through
the center of a sphere, , and the sphere itself. A fixed great circle referenced as𝑂
the equator ( ) splits a sphere into two hemispheres: a northern hemisphere and a𝐸
southern hemisphere. Corresponding to are two poles and , the two points in𝐸 𝑁 𝑆
the northern and southern hemispheres, respectively, that are furthest from .𝐸

Given a unit sphere with origin mapped on a three-dimensional Cartesian𝑂
coordinate system, we establish a point on the surface of the sphere ( being a𝑃 𝑃
point other than the sphere’s poles) specified by Cartesian coordinates .(𝑥,  𝑦,  𝑧)
The meridian, , of is half of the great circle containing and terminated by𝑀

𝑃
𝑃 𝑃

the poles. We also establish a reference point on , along with its meridian .𝑅 𝐸 𝑀
𝑅

The scenario thus far is depicted below in Diagram 1:

Diagram 1: Setup of the Unit Sphere (O, E, N, S, P, MP, R, MR)

Point , however, can also be specified by latitude and longitude in reference .𝑃 𝑅



Latitude ( ) is the angle measure from the intersection of and , to P. Thisθ 𝑀
𝑃

𝐸

measure can be either positive or negative, depending on whether falls above or𝑃
below . For the purposes of this paper, we will limit our scope to a positive .𝐸 θ
The locus of points with a constant latitude is a parallel of latitude. Longitude ( )ϕ
is the angle measure along the equator from to the intersection of and . As𝑅 𝑀

𝑃
𝐸

with , can also be either positive or negative, depending on whether it isθ ϕ
measure in the clockwise or counterclockwise direction, respectively, along 𝐸
from as viewed from . Within this paper, our scope will be limited to a positive𝑅 𝑆

—a clockwise rotation as viewed from . Latitude and longitude in context ofϕ 𝑆
the above description, along with the parallel of latitude at the latitude of , are𝑃
illustrated below in Diagram 2:

Diagram 2: Latitude ( ) and Longitude ( ) of Pθ ϕ

2.2. Parametrization of the Sphere
As discussed previously, can be specified by Cartesian coordinates ,𝑃 (𝑥,  𝑦,  𝑧)
but also by angle measure with latitude and longitude ( , ). Inherently,θ ϕ
projection of a three-dimensional spherical surface onto a two-dimensional plane
involves the relaying of three-dimensional Cartesian coordinates into
two-dimensional Cartesian coordinates. This means that needs to have a(𝑥,  𝑦,  𝑧)
common translation to —the specifying coordinates of the two-dimensional(𝑢,  𝑣)
plane. This is done by defining all variables as a function of and ; thus, weθ ϕ
now parametrize the Cartesian variables of the unit sphere as functions of andθ

.ϕ

Taking our point at a positive , we first draw a line straight down𝑃 (𝑥,  𝑦,  𝑧)
(cutting through the sphere) to the flat -plane (to the point ),𝑥𝑦 𝑃

2
(𝑥,  𝑦,  0)



creating a right triangle. This is illustrated in Diagram 3, while the triangle is
highlighted in Diagram 4:

Diagram 3: Triangle (focus on ) in the Sphereθ

Diagram 4: Triangle (focus on )θ

As highlighted in Diagram 4, the hypotenuse of the created triangle is 1, because
it is a radius of the unit sphere. Additionally, the leg opposite of has length∠θ 𝑧
because, as seen in Diagram 3, it corresponds with the height on the -axis. By𝑧
trigonometric ratios, then simplification:

𝑠𝑖𝑛 θ = 𝑧
1

𝑧 = 𝑠𝑖𝑛 θ



The length of the leg adjacent to can also be found in this way:∠θ

𝑐𝑜𝑠 θ =
𝑂𝑃

2

1

𝑂𝑃
2

= 𝑐𝑜𝑠 θ

To attain the parametrization of and , we create another right triangle, this time𝑥 𝑦
focusing on rather than . This new triangle lies flat on the -plane, created byϕ θ 𝑥𝑦
drawing a line from the point to , and is shown in𝑃

2
(𝑥,  𝑦,  0) 𝑃

1
(𝑥,  0,  0)

Diagrams 5 and 6:

Diagram 5: Triangle (focus on ) in the Sphereϕ

Diagram 6: Triangle (focus on )ϕ



The triangle leg adjacent to has length because it corresponds with the∠ϕ 𝑥 𝑥
-axis, while the leg opposite of has length because it corresponds with the∠ϕ 𝑦 𝑦
-axis, both of which are depicted in Diagram 5. Additionally, the hypotenuse
extending from to is shared with the leg adjacent to on the first triangle𝑂 𝑃

2
∠θ

we created. We found earlier that this had length .𝑐𝑜𝑠θ

Using these values, we find using trigonometric ratios:

𝑐𝑜𝑠 ϕ = 𝑥
𝑐𝑜𝑠θ

𝑠𝑖𝑛 ϕ = 𝑦
𝑐𝑜𝑠θ

Simplifying, we attain the parametrized and :𝑥 𝑦

𝑥 = 𝑐𝑜𝑠 ϕ 𝑐𝑜𝑠 θ
𝑦 = 𝑠𝑖𝑛 ϕ 𝑐𝑜𝑠 θ

Thus, we now attain the parametrization of the Cartesian coordinates of the unit
sphere. Although we will be working with spherical coordinates in this(ϕ,  θ)
paper, knowing how to translate between these coordinates and Cartesian

is instrumental in understanding the full projection from three(𝑥,  𝑦,  𝑧)
dimensions to two dimensions.



3. An Introduction to Projection

3.1. Theorema Egregium
Before discussing the mathematics of three-dimensional to two-dimensional
projection itself, it is necessary to understand the distortion factor: it is impossible
to display a three-dimensional surface in two dimensions without distortion.
While it is possible to retain certain properties, such as area, distance, or angle,
not all properties can be preserved simultaneously. This was proved by Carl
Friedrich Gauss with his Theorema Egregium in 1828; although his proof is
outside the scope of this paper, it can be described with a more mundane analogy.
Taking an orange peel (a three-dimensional spherical surface), it is impossible to
flatten it (into a two-dimensional plane) without tearing or stretching it. Just like
with the orange peel, for an untorn projection of any sphere, it is inevitable that its
surface be “stretched”, causing distortion of certain properties.

3.2. Types of Projection
Due to the impossible nature of a perfect projection, one defining factor of a given
projection centers around which properties are retained. For example, as an
application in the real world, certain maps of the Earth retain the relative areas of
land masses, while others retain relative distances between points on the Earth.
Other maps that retain angle are quintessential for navigation with a compass.
Throughout this paper, the specific details of projections as they pertain to the
application of cartography will be discussed.

Another differentiating factor between projections is the shape of the
two-dimensional surface onto which the sphere is projected, also known as a
developable surface. Formally, developable surfaces are known as
three-dimensional surfaces that can be flattened or “unrolled” into a flat surface
without the stretching or tearing that would characterize an attempt to flatten a
sphere directly. Projections work by first projecting the surface of the sphere onto
a three-dimensional developable surface before “unrolling” the new projection,
leaving a distorted version of the original surface on a two-dimensional plane.
Developable surfaces include the cylindrical and conical surfaces, as well as
direct projections onto two-dimensional planar surfaces.

Between these two factors, there are a myriad of possible combinations; a
cylindrical distance-preserving map, a cylindrical angle-preserving map, or a
conical angle-preserving map are some examples of projections. In this paper, we
will be exploring the planar gnomonic projection (projects directly onto a plane)



and three types of conformal projections (first projects onto another
three-dimensional surface).



4. Planar Gnomonic Projection
Let us start with the planar gnomonic projection, a direct projection onto a
two-dimensional plane. This projection is a central projection—a projection from the
center of the sphere—and shows less than a hemisphere. The setup of this projection
involves a flat plane tangent to the sphere (for this paper we take the plane tangent to the
north pole and name it ). The projection works by drawing the line between the center𝑁 𝑇
of the sphere and a given point on the surface of the sphere, and finding the intersection
of the line with . The intersection point serves as the two-dimensional projection of the𝑇
originally three-dimensional point. Diagram 7 provides a visual representation of a
projection of three-dimensional points and on the spherical surface onto𝑄

3
𝑃

3

two-dimensional and , respectively, on the flat plane.𝑄
2

𝑃
2

Diagram 7: Planar Gnomonic Projection of and𝑄
3

𝑃
3

The most notable property of the planar gnomonic projection is that it maps great circles
onto straight lines on . This is because, as defined in Section 2.1, a great circle is by𝑇
definition the intersection of a two-dimensional plane (let’s define the plane as ) that𝐺
passes through the center of a sphere and the sphere itself. This means that, in conducting
the gnomonic projection, any line drawn between the center of the sphere and a point on
the great circle (on the surface of the sphere) is contained in . Since the lines drawn𝐺
during the projection process for any great circle all lie in , their projection on the is𝐺 𝑇
the intersection of and . The intersection of any two non-parallel planes is a straight𝐺 𝑇
line. For clarification, this concept is illustrated in Diagram 8, where the final projection
of a straight line is highlighted in yellow:



Diagram 8: Great Circle Mapped to Straight Line

This has significant implications as an application. On a sphere’s surface, a great circle
marks the shortest distance between any given two points. Consequently, for navigators
on the Earth’s surface, the shortest distance between two points is marked by drawing the
straight line between them on a map.

Great circles marking the shortest distance between points on a sphere can be proven with
geometry and calculus:

Given two points and on a sphere (of radius ), the straight line between𝑃
𝐴

𝑃
𝐵

𝑅

them is . Then, let us define a plane intersecting the sphere that includes𝑃
𝐴

𝑃
𝐵

𝐼 𝑃
𝐴

and . This scenario, as well as the circular cross-section (of radius and center𝑃
𝐵

𝑟

) of the sphere and are depicted in Diagram 9. The arc on the edge of the𝑜 𝐼
circular cross-section between and is .𝑃

𝐴
𝑃

𝐵
𝑃

𝐴
𝑃

𝐵



Diagram 9: and Plane Intersection and Cross-Section𝑃
𝐴

𝑃
𝐵

We now aim to find the value of which minimizes ; we minimize𝑟 𝑃
𝐴

𝑃
𝐵

𝑃
𝐴

𝑃
𝐵

because, in the application of the Earth, we can only travel on its surface.

Firstly, we establish that . if passes through the center of
𝑃

𝐴
𝑃

𝐵

2 ≤ 𝑟 ≤ 𝑅 𝑟 = 𝑅 𝐼

the sphere, because that would make the cross-section a great circle with its radius
equal to the radius of the sphere. However, it can also be possible to have 𝑟 < 𝑅
if does not intersect the center of the sphere, and the circular cross-section has a𝐼
smaller radius than the sphere. Additionally, the maximum distance (or value of

) between and is the diameter ( ) of the circular cross-section,𝑃
𝐴

𝑃
𝐵

𝑃
𝐴

𝑃
𝐵

2𝑟

meaning . Simplifying, we get .2𝑟 ≥ 𝑃
𝐴

𝑃
𝐵

𝑃
𝐴

𝑃
𝐵

2 ≤ 𝑟

Focusing on the circular cross-section, we use the arc length formula ,𝑠(𝑟) = 𝑟θ
where is the arc , is the radius, and is the angle measure between𝑠(𝑟) 𝑃

𝐴
𝑃

𝐵
𝑟 θ 𝑃

𝐴

and .𝑃
𝐵

The law of cosines allows us to claim that, for triangle :∆𝑃
𝐴

𝑃
𝐵

𝑜

(𝑃
𝐴

𝑃
𝐵

)
2

= 2𝑟2 − 2𝑟2𝑐𝑜𝑠θ

Solving for , we getθ



2𝑟2𝑐𝑜𝑠θ = 2𝑟2 − (𝑃
𝐴

𝑃
𝐵

)2

𝑐𝑜𝑠θ =
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2

θ = 𝑐𝑜𝑠−1(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2 )

We can now plug this value of into the arc length formula:θ

𝑠(𝑟) = 𝑟 × 𝑐𝑜𝑠−1(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2 )

To minimize , we find the first and second derivatives of .𝑃
𝐴

𝑃
𝐵

𝑠(𝑟)

Because consists of , , and as variables, it is necessary to take𝑠(𝑟) 𝑠 𝑟 𝑃
𝐴

𝑃
𝐵

a partial derivative with respect to , as that is the variable we are looking𝑟
to minimize. As a result, will be regarded as a fixed number.𝑃

𝐴
𝑃

𝐵

First we apply the product rule.

𝑠'(𝑟) = ∂
∂𝑟 (𝑟)(𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 )) + ∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 ))𝑟

requires further calculation.∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 ))

We briefly substitute .𝑢 =
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2

Knowing that , we substitute back𝑑
𝑑𝑢 𝑐𝑜𝑠−1(𝑢) =− 1

1−𝑢2
𝑑𝑢 𝑢

in:

∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 )) =− 1

1−(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)

2

2𝑟2 )2

× ∂
∂𝑟 (

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

2𝑟2 )

Both factors here need to be simplified further.

Firstly, with , we square the fraction under the− 1

1−(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)

2

2𝑟2 )2

square root and transform the radicand into a single fraction by
matching the denominator of the , allowing the overall fraction to1
be simplified.

− 1

1−
(4𝑟4−4𝑟2(𝑃

𝐴
𝑃

𝐵
)

2
+(𝑃

𝐴
𝑃

𝐵
)

4
)

4𝑟4



− 1

4𝑟4

4𝑟4 −
(4𝑟4−4𝑟2(𝑃

𝐴
𝑃

𝐵
)

2
+(𝑃

𝐴
𝑃

𝐵
)

4
)

4𝑟4

− 1

4𝑟4−(4𝑟4−4𝑟2(𝑃
𝐴

𝑃
𝐵

)
2
+(𝑃

𝐴
𝑃

𝐵
)

4
)

4𝑟4

− 1

4𝑟2(𝑃
𝐴

𝑃
𝐵

)
2
−(𝑃

𝐴
𝑃

𝐵
)

4

4𝑟4

Our final result is: .− 2𝑟2

𝑃
𝐴

𝑃
𝐵

4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

Now, we simplify the other factor, . We first apply∂
∂𝑟 (

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

2𝑟2 )

the quotient rule, then simplify the resulting fraction.
2𝑟2( ∂

∂𝑟 (2𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2
))−(2𝑟2−(𝑃

𝐴
𝑃

𝐵
)

2
)( ∂

∂𝑟 (2𝑟2))

(2𝑟2)2

, applying the power rule.∂
∂𝑟 (2𝑟2) = 4𝑟

, for the same reason,∂
∂𝑟 (2𝑟2 − (𝑃

𝐴
𝑃

𝐵
)

2
) = 4𝑟

and can be disregarded with being− (𝑃
𝐴

𝑃
𝐵

)
2

𝑃
𝐴

𝑃
𝐵

considered a fixed value.
2𝑟2(4𝑟)−(2𝑟2−(𝑃

𝐴
𝑃

𝐵
)

2
)(4𝑟)

4𝑟4

8𝑟3−(8𝑟3−4𝑟(𝑃
𝐴

𝑃
𝐵

)
2
)

4𝑟4

4𝑟(𝑃
𝐴

𝑃
𝐵

)
2

4𝑟4

Our final result is: .
(𝑃

𝐴
𝑃

𝐵
)

2

𝑟3

Now that both factors have been simplified, we attain:

∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 )) =− 2𝑟2

𝑃
𝐴

𝑃
𝐵

4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

×
(𝑃

𝐴
𝑃

𝐵
)

2

𝑟3

This can be simplified to:

.∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 )) =−
2𝑃

𝐴
𝑃

𝐵

𝑟 4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

Finally, we state that .∂
∂𝑟 (𝑟) = 1



We can now substitute and into our∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 )) ∂
∂𝑟 (𝑟)

original product rule:

𝑠'(𝑟) = 1 * (𝑐𝑜𝑠−1(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2 )) + (−
2𝑃

𝐴
𝑃

𝐵

𝑟 4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

) * 𝑟

The first derivative of is:𝑠(𝑟)

𝑠'(𝑟) = 𝑐𝑜𝑠−1(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2 ) −
2(𝑃

𝐴
𝑃

𝐵
)

4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

Now we find the second derivative of by taking the derivative of𝑠(𝑟)
. Using the sum and difference rule, we know that:𝑠'(𝑟)

𝑠''(𝑟) = ∂
∂𝑟 (𝑐𝑜𝑠−1(

2𝑟2−(𝑃
𝐴

𝑃
𝐵

)2

2𝑟2 )) − ∂
∂𝑟 (

2(𝑃
𝐴

𝑃
𝐵

)

4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

)

From our calculation of , we already know that𝑠'(𝑟)
∂

∂𝑟 (𝑐𝑜𝑠−1(
2𝑟2−(𝑃

𝐴
𝑃

𝐵
)2

2𝑟2 )) =−
2(𝑃

𝐴
𝑃

𝐵
)

𝑟 4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

∂
∂𝑟 (

2(𝑃
𝐴

𝑃
𝐵

)

4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

)

From here, we plug back into our final equation for .𝑠''(𝑟)

𝑠''(𝑟) =−
2(𝑃

𝐴
𝑃

𝐵
)

𝑟 4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2

+ 8𝑐𝑟

(4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2
)

3
2

Lastly, we find a common denominator and simplify.

−
2(𝑃

𝐴
𝑃

𝐵
)(4𝑟2−(𝑃

𝐴
𝑃

𝐵
)

2
)

𝑟(4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2
)

3
2

+
8(𝑃

𝐴
𝑃

𝐵
)𝑟2

𝑟(4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2
)

3
2

−8(𝑃
𝐴

𝑃
𝐵

)𝑟2+2(𝑃
𝐴

𝑃
𝐵

)
3
+8(𝑃

𝐴
𝑃

𝐵
)𝑟2

𝑟(4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2
)

3
2

The second derivative of is:𝑠(𝑟)

𝑠''(𝑟) =
2(𝑃

𝐴
𝑃

𝐵
)

3

𝑟(4𝑟2−(𝑃
𝐴

𝑃
𝐵

)
2
)

3
2

Now that we have and , we can tell that𝑠'(𝑟) 𝑠''(𝑟)



I. is continuous on𝑠(𝑟) [
𝑃

𝐴
𝑃

𝐵

2 , ∞)

II. is twice-differentiable on𝑠(𝑟) (
𝑃

𝐴
𝑃

𝐵

2 , ∞)

This allows us to claim that, when 𝑟 >
𝑃

𝐴
𝑃

𝐵

2

I. , because4𝑟2 − (𝑃
𝐴

𝑃
𝐵

)
2

> 0 4(
𝑃

𝐴
𝑃

𝐵

2 )2 − (𝑃
𝐴

𝑃
𝐵

)
2

= 0

II. , because is always positive when𝑠''(𝑟) > 0 𝑠''(𝑟) 4𝑟2 − (𝑃
𝐴

𝑃
𝐵

)
2

> 0

III. increases, because signifies a positive slope for𝑠'(𝑟) 𝑠''(𝑟) > 0 𝑠'(𝑟)

Although we know that increases, in order to assess the minimum value of𝑠'(𝑟)

we need to know if is positive or negative when by taking𝑠(𝑟) 𝑠'(𝑟) 𝑟 >
𝑃

𝐴
𝑃

𝐵

2

the limit of as approaches each boundary.𝑠'(𝑟) 𝑟

𝑟
𝑃

𝐴
𝑃

𝐵

2

+
lim

→
𝑠'(𝑟) = 𝑐𝑜𝑠−1(

2(
𝑃

𝐴
𝑃

𝐵

2 )
2

−(𝑃
𝐴

𝑃
𝐵

)
2

2(
𝑃

𝐴
𝑃

𝐵

2 )
2 ) −

2𝑃
𝐴

𝑃
𝐵

4(
𝑃

𝐴
𝑃

𝐵

2 )
2

−(𝑃
𝐴

𝑃
𝐵

)
2

= 𝑐𝑜𝑠−1(
𝑃

𝐴
𝑃

𝐵

2

2 −(𝑃
𝐴

𝑃
𝐵

)2

𝑃
𝐴

𝑃
𝐵

2

2

) −
2𝑃

𝐴
𝑃

𝐵

(𝑃
𝐴

𝑃
𝐵

)2−(𝑃
𝐴

𝑃
𝐵

)
2

= 𝑐𝑜𝑠−1(− 1) −
2𝑃

𝐴
𝑃

𝐵

0

= π − ∞
=− ∞

𝑟 ∞
lim
→

𝑠'(𝑟) = 𝑐𝑜𝑠−1(
2(∞)2−(𝑃

𝐴
𝑃

𝐵
)

2

2(∞)2 ) −
2𝑃

𝐴
𝑃

𝐵

4(∞)2−(𝑃
𝐴

𝑃
𝐵

)
2

= 𝑐𝑜𝑠−1(1) −
2𝑃

𝐴
𝑃

𝐵

∞

= 0 − 0
= 0

Knowing that increases when , , and𝑠'(𝑟) 𝑟 >
𝑃

𝐴
𝑃

𝐵

2
𝑟

𝑃
𝐴

𝑃
𝐵

2

+
lim

→
𝑠'(𝑟) =− ∞

, we conclude that when . This tells us that
𝑟 ∞
lim
→

𝑠'(𝑟) = 0 𝑠'(𝑟) < 0 𝑟 >
𝑃

𝐴
𝑃

𝐵

2

decreases between when . is minimized when is maximized,𝑠(𝑟) 𝑟 >
𝑃

𝐴
𝑃

𝐵

2 𝑠(𝑟) 𝑟



and because our limits for are , is at its minimum when𝑟
𝑃

𝐴
𝑃

𝐵

2 ≤ 𝑟 ≤ 𝑅 𝑠(𝑟)

—this is the great circle case.𝑟 = 𝑅

Thus, we prove that great circles are the shortest route between any two points on the
surface of a sphere, and demonstrate the applicability of the gnomonic projection by
highlighting the correlation between great circles being the shortest route, and the
mapping of great circles into straight lines with the gnomonic projection.



5. Conformal Map Projection
The next family of projections is a conformal map projection. This type of projection
preserves angles between any two curves on the surface of a sphere. This relationship is
highlighted below in Diagram 10—regardless of the difference between and or∆Φ ∆𝑢 ∆θ
and , the conformal projection preserves of the intersection between any two∆𝑣 ∠α
curves. We will be highlighting a conformal map projection onto three different
developable surfaces: the plane, the cylinder, and the cone.

Diagram 10: Conformal Projection, Preservation of ∠α

5.1. Stereographic Projection
We will start with the stereographic projection because, out of the three conformal
projections we will explore, it is most similar to the gnomonic projection we have
explored thus far. The stereographic projection also projects from the sphere
directly onto a tangent plane, but it is not a central projection; the projection is
instead from the opposite pole. The key difference between planar gnomonic and
stereographic projections is that stereographic projections, as conformal
projections, preserve the angle between intersecting curves. The projection we
will examine (a plane tangent to the north pole and projecting from the south𝑇 𝑁
pole of a unit sphere) is depicted in Diagram 11, displaying projection of to𝑆 𝑃

3

:𝑃
2



Diagram 11: Stereographic Projection

As defined in Section 2.1, point can be specified by latitude and longitude𝑃 θ ϕ
in reference to a point on the equator . Our aim in the mathematics of this𝑅 𝐸
projection is to find a way to attain the projected Cartesian coordinates on(𝑢, 𝑣) 𝑇
of a point given in terms of and . For this paper, and𝑃

3
θ ϕ θ ∈ (0,  π

2 )

.ϕ ∈ (0,  π
2 )

We will first focus on , and visualize the projection from the side of the globe soθ
that the sphere appears as a circle and appears as a line (Diagram 12).𝑇

Diagram 12: Stereographic Projection Side View

By Alternate Interior Angles Theorem, we know that , given∠𝑃
3
𝑂𝑅 ≅ ∠𝐵𝑃

3
𝑂

that is defined such that . We also know that and are𝐵 𝐵𝑃 || 𝑂𝑅 △𝑆𝐵𝑃
3

△𝑆𝑁𝑃
2

similar by Angle-Angle Similarity Theorem, as they share in common and∠𝐵𝑆𝑃
3



and both have right angles. This allows us to solve for the length of ,∠𝑁𝑆𝑃
2

𝑁𝑃
2

which allows us to attain the final Cartesian coordinates of .𝑃
2

Diagram 13: Similar Triangles and△𝑆𝐵𝑃
3

△𝑆𝑁𝑃
2

Because and , we know that . Thus,∠𝑃
3
𝑂𝑅 = θ ∠𝑃

3
𝑂𝑅 ≅ ∠𝐵𝑃

3
𝑂 ∠𝐵𝑃

3
𝑂 = θ

we use trigonometric ratios to find :𝐵𝑃
3

𝑐𝑜𝑠 θ =
𝐵𝑃

3

𝑂𝑃
3

Since is equal to the radius of the unit sphere (1),𝑂𝑃
3

𝐵𝑃
3

= 𝑐𝑜𝑠 θ

Similarly, we can conclude that

𝑠𝑖𝑛 θ = 𝐵𝑂
𝑂𝑃

3

𝐵𝑂 = 𝑠𝑖𝑛 θ
Since is a radius of the sphere,𝑂𝑆

𝑂𝑆 = 1
Therefore,

𝐵𝑆 = 𝐵𝑂 + 𝑂𝑆 = 𝑠𝑖𝑛 θ + 1
Additionally, since is a diameter of the sphere,𝑁𝑆

𝑁𝑆 = 2
The ratios of the corresponding sides of and are equal, so we can△𝑆𝐵𝑃

3
△𝑆𝑁𝑃

2

solve for :𝑁𝑃
3

𝑁𝑃
3

2 = 𝑐𝑜𝑠θ
𝑠𝑖𝑛θ+1



𝑁𝑃
3

= 2𝑐𝑜𝑠θ
𝑠𝑖𝑛θ+1 = 2

𝑡𝑎𝑛θ+𝑠𝑒𝑐θ

Now that we have a value for , we need to take into account . To do this, we𝑁𝑃
3

ϕ

take a view of from the top. The point of tangency ( ) is in Cartesian𝑇 𝑁 (0, 0)
coordinates, and the meridian of maps onto the negative -axis. As a result, a𝑅 𝑣
point with rotating clockwise from as viewed from would𝑃

3
ϕ ∈ (0,  π

2 ) 𝑅 𝑆

project to a point in the bottom right quadrant of (Diagram 14).𝑃
2

𝑇

From this, we can gather that:
𝑠𝑖𝑛 ϕ = 𝑢

𝑁𝑃
2

𝑐𝑜𝑠 ϕ = −𝑣
𝑁𝑃

2

And thus we attain Cartesian coordinates on , and , as functions of spherical𝑇 𝑢 𝑣
coordinates and :ϕ θ

𝑢 = 𝑠𝑖𝑛 ϕ * 𝑁𝑃
2

= 𝑠𝑖𝑛ϕ * 2
𝑡𝑎𝑛θ+𝑠𝑒𝑐θ

𝑣 =− 𝑐𝑜𝑠 ϕ * 𝑁𝑃
2

=− 𝑐𝑜𝑠 ϕ * 2
𝑡𝑎𝑛θ+𝑠𝑒𝑐θ

Diagram 14: Plane Top View𝑇

This can be demonstrated with a potential spherical coordinate .(ϕ,  θ) = ( π
3 , π

4 )

𝑢 = 𝑠𝑖𝑛 ( π
3 ) * 2

𝑡𝑎𝑛( π
4 )+𝑠𝑒𝑐( π

4 )
= 3

2 * 2
1+ 2

2

= 6
2+2

≈ 0. 717

𝑣 =− 𝑐𝑜𝑠 ( π
3 ) * 2

𝑡𝑎𝑛( π
4 )+𝑠𝑒𝑐( π

4 )
=− 1

2 * 2
1+ 2

2

=− 2
2+2

≈− 0. 414

Spherical coordinates project to Cartesian coordinates(ϕ,  θ) = ( π
3 , π

4 )

.(0. 717,  − 0. 414)



As it is conformal, the stereographic projection maps all circles on the sphere to
circles on . This creates useful applications in creating maps of not just the𝑇
Earth, but especially of other planetary bodies. As an example, the surface of the
moon is covered by circular craters. The stereographic projection is useful in
preserving the circular shape of these craters on the three-dimensional spherical
surface, on the two-dimensional flat plane.

5.2. Cylindrical Projection
Our second conformal projection is the cylindrical projection, better known as the
famous (Standard) Mercator projection. The setup for this projection includes a
hollow cylinder that is tangent to the equator of a unit sphere. This projection𝐸
first maps the sphere onto the inside of the cylinder before “cutting it” vertically
and “rolling it out” onto a rectangular two-dimensional plane . The projection is𝑇
not from the center of the sphere, . This is because the projection is not from a𝑂
specific point. Instead, the sphere acts as a “balloon”, and as it “inflates” and
intersects with the cylinder, it “clings” to the inside of the cylinder. For the
purposes of this paper, the vertical line we will “cut” to unroll the cylinder is the
antipode of our reference point (where ) so that itself ends up𝑅 (ϕ, θ) = (0, 0) 𝑅
in the center of . The projection process of (on the surface of the sphere) to𝑇 𝑃

3

(on the inside of the cylinder and unrolled on ), to (the reference point),𝑃
2

𝑇 𝑅
3

𝑅
2

and to (the equator) following the Mercator projection is shown in Diagram𝐸
3

𝐸
2

15.

Diagram 15: Cylindrical Projection (Project and Unroll)



There are some properties of the cylindrical projection we must consider. Because
the unit sphere has a radius of , (a circumference of the sphere) has a radius1 𝐸 2π
. The cylinder is tangent to , so its width when unrolled into a rectangle is also𝐸

. Additionally, we assume that meridians map to vertical lines on while2π 𝑇
parallels of latitude map to horizontal lines. This is because of preservation of
angle—meridians have constant longitude while parallels have constant latitude,
and the nature of a conformal projection preserves this feature.

As with the stereographic projection, our aim of the mathematics of this
projection is to find a way to attain the projected Cartesian coordinates on(𝑢, 𝑣) 𝑇
of a point given in terms of and while preserving the angle of theθ ϕ ∠α
intersection between any two curves. Rather than working with the projection of a
single point, we will take the projection of a rectangular space, entailing the use of
not only a point but also a small angular change and from .𝑃

3
(ϕ, θ) ∆ϕ ∆θ 𝑃

3

This projects onto a point with small change in length and on .𝑃
2
(𝑢,  𝑣) ∆𝑢 ∆𝑣 𝑇

This concept is highlighted in Diagram 10.

We start by looking at the radius of the circle that makes up the parallel of latitude
of . It is important to differentiate that this is the parallel of and not .θ θ θ + ∆θ
As shown in Diagram 16, is the equator, is the parallel of latitude at , is𝐸 𝐸

θ
θ 𝑂

the center of the sphere, is the center of , is the point (shares the𝑂
θ

𝐸
θ

𝑃
𝐸

(ϕ, 0)

latitude of but intersects with ), and is the reference point from which𝑃
3

𝐸 𝑅 ϕ

and are measured.θ

Diagram 16: Parallel of Latitude of θ

By Alternate Interior Angles Theorem, we know that , since∠𝑂
θ
𝑃

3
𝑂 ≅ ∠𝑃

3
𝑂𝑃

𝐸

. Also, as a radius of the unit sphere.𝐸 || 𝐸
θ

𝑂𝑃
3

= 1



Considering that is a right angle,∠𝑂𝑂
θ
𝑃

3

𝑐𝑜𝑠 θ =
𝑂

θ
𝑃

3

𝑂𝑃
3

=
𝑂

θ
𝑃

3

1 = 𝑂
θ
𝑃

3

Now that we know this, we can focus on finding the lengths of the edges of the
rectangular area created by and . This is important because these lengths∆ϕ ∆θ
correspond to and on . As clarified in Diagram 17, it's important to note∆𝑢 ∆𝑣 𝑇
that and in this case denote change in angle measure, not the length of the∆ϕ ∆θ
arc itself, which we will now find. and , however, denote length on rather∆𝑢 ∆𝑣 𝑇
than angle measure. Diagram 17 introduces new points , , that make up𝑃

∆ϕ
𝑃

∆θ
𝑃

∆

the vertices of the rectangular area (along with ).𝑃
3

Diagram 17: Close-up of 𝐸
θ

Using the arc length formula , we can attain (or the edge of the𝑠 = 𝑟θ 𝑃
3
𝑃

∆θ

rectangular area parallel to the meridians and corresponding to ) and (or∆θ 𝑃
3
𝑃

∆ϕ

the edge parallel to the parallels of latitude and corresponding to ).∆ϕ

𝑃
3
𝑃

∆ϕ
= (𝑂

θ
𝑃

3
)(∆ϕ) = ∆ϕ 𝑐𝑜𝑠(θ)

𝑃
3
𝑃

∆θ
= (𝑂𝑃

3
)(∆θ) = (1)(∆θ) = ∆θ

Also, since ,𝑃
3
𝑃

∆θ
 ≅ 𝑃

∆ϕ
𝑃

∆

 𝑃
∆ϕ

𝑃
∆

= ∆θ

Using these results, we take into account and form an equation involving∠α ∠α
in terms of and . (found in Diagram 17 as ) needs to beϕ θ ∠α ∠𝑃

∆θ
𝑃

3
𝑃

∆

preserved with the projection. Using the Alternate Interior Angles Theorem, we
know that is congruent to . Additionally, although on the∠𝑎 ∠𝑃

3
𝑃

∆
𝑃

∆ϕ
∠𝑃

3
𝑃

∆ϕ
𝑃

∆

spherical surface is not a right angle, its projection on the two-dimensional



surface is. Since the conformal projection aims to preserve angle, we can treat
as a right angle. As a result,∠𝑃

3
𝑃

∆ϕ
𝑃

∆

𝑐𝑜𝑡 ∠𝑃
3
𝑃

∆
𝑃

∆ϕ
= 𝑐𝑜𝑡 𝑎 ≈

 𝑃
∆ϕ

𝑃
∆
 

𝑃
3
𝑃

∆ϕ

= ∆θ
∆ϕ 𝑐𝑜𝑠(θ)

Because corresponds to and , and because preservation of entails∆𝑢 ∆ϕ ∠α
preservation of its trigonometric ratios:

𝑐𝑜𝑡 𝑎 ≈ ∆𝑣
∆𝑢 = ∆𝑣

∆ϕ

The reason why we focus on the vertical and replace the horizontal is because𝑣 𝑢
we already know the width of is fixed at . A constant width means that, given𝑇 2π

, we already know what it will distort to. It is that we need to find the∆𝑢 ∆𝑣
distortion for. It also means, for this projection, .∆𝑢 = ∆ϕ

This allows us to equate:

∆𝑣
∆ϕ = ∆θ

∆ϕ 𝑐𝑜𝑠(θ)

Thus,
∆𝑣
∆ϕ = ∆θ

∆ϕ 𝑐𝑜𝑠(θ)

∆𝑣 = ∆θ
𝑐𝑜𝑠(θ)

∆𝑣
∆θ = 𝑠𝑒𝑐 θ

Now if we let approach 0, we attain the derivative of :∆θ 𝑣
𝑑𝑣
𝑑θ = 𝑠𝑒𝑐 θ

We then integrate:

𝑣(θ) = ∫ 𝑠𝑒𝑐 θ 𝑑θ = ∫ 1
𝑐𝑜𝑠 θ 𝑑θ = ∫ 𝑐𝑜𝑠 θ

𝑐𝑜𝑠2 θ
𝑑θ = ∫ 𝑐𝑜𝑠 θ

1−𝑠𝑖𝑛2 θ
𝑑θ

We use u-substitution:
𝑢 = 𝑠𝑖𝑛 θ
𝑑𝑢 = 𝑐𝑜𝑠 θ 𝑑θ

∫ 𝑠𝑒𝑐 θ 𝑑θ = ∫ 1

1−𝑢2 𝑑𝑢

We apply partial fractions:



∫ 1

1−𝑢2 𝑑𝑢 = ∫( 𝐴
1+𝑢 + 𝐵

1−𝑢 )𝑑𝑢

𝐴(1 − 𝑢) + 𝐵(1 + 𝑢) = 1
When , ,𝑢 = 1 2𝐵 = 1 𝐵 = 1

2

When , ,𝑢 =− 1 2𝐴 = 1 𝐴 = 1
2

∫(
1
2

1+𝑢 + ∫
1
2

1−𝑢 )𝑑𝑢

1
2 (𝑙𝑜𝑔|1 + 𝑢| − 𝑙𝑜𝑔|1 − 𝑢) + 𝐶

Then we re-substitute:
𝑣(θ) = 1

2 (𝑙𝑜𝑔|1 + 𝑠𝑖𝑛 θ| − 𝑙𝑜𝑔|1 − 𝑠𝑖𝑛 θ|) + 𝐶

Finally, we simplify:
1
2 (𝑙𝑜𝑔| 1+𝑠𝑖𝑛 θ

1−𝑠𝑖𝑛 θ |) + 𝐶
1
2 (𝑙𝑜𝑔| 1+𝑠𝑖𝑛 θ

1−𝑠𝑖𝑛 θ |) + 𝐶

1
2 (𝑙𝑜𝑔| (1+𝑠𝑖𝑛 θ)2

𝑐𝑜𝑠2θ
|) + 𝐶

𝑙𝑜𝑔| 1+𝑠𝑖𝑛 θ
𝑐𝑜𝑠 θ | + 𝐶

𝑣(θ) = 𝑙𝑜𝑔|𝑠𝑒𝑐 θ + 𝑡𝑎𝑛 θ| + 𝐶

Since (when , the projected point ), :𝑣(0) = 0 θ = 0 𝑣 = 0 𝐶 = 0
𝑢(ϕ, θ) = ϕ
𝑣(ϕ, θ) = 𝑙𝑜𝑔|𝑠𝑒𝑐 θ + 𝑡𝑎𝑛 θ|

This can be demonstrated with spherical coordinate .(ϕ,  θ) = (− π
3 , π

4 )

𝑢 =− π
3 ≈− 1. 047

𝑣 = 𝑙𝑜𝑔|𝑠𝑒𝑐 ( π
4 ) + 𝑡𝑎𝑛 ( π

4 )| ≈ 0. 383

Spherical coordinates project to Cartesian(ϕ,  θ) = (− π
3 , π

4 )

coordinates .(− 1. 047, 0. 383)

The most prominent application of the cylindrical projection is in cartography,
with the infamous Mercator projection of the Earth. Because angle is preserved,
lines with a constant compass bearing (in our example acted as the bearing∠α
and as the line) map to straight lines on a two-dimensional plane. This is𝑃

3
𝑃

∆



helpful to navigators, who can simply draw a straight line between two points,
measure its compass bearing, and from there rely on only a compass to navigate.



6. Equal-Area Projection
An equal-area projection aims to retain the relative area of the surface of the sphere. As
we examined the cylindrical conformal projection in the previous section, we will
examine the cylindrical equal-area projection as our example. Similar to its conformal
counterpart, this projection maps the sphere onto the inside of a cylinder before rolling it
out (Diagram 15). However, instead of aiming to preserve the angle between curves, it
aims to preserve the area of a given space. As a result, we will also utilize our same setup
of a small rectangle (small angular change and from and small change in∆ϕ ∆θ 𝑃

3

length and on ) in this example, so that we can consider its area.∆𝑢 ∆𝑣 𝑇

Because of this same setup, much of the early process of the mathematics of this
projection matches with the conformal counterpart. Carrying over the terminology and
variables involved in the previous section, we continue to claim that (corresponding to
Diagram 17):

𝑃
3
𝑃

∆ϕ
= (𝑂

θ
𝑃

3
)(∆ϕ) = ∆ϕ 𝑐𝑜𝑠(θ)

𝑃
3
𝑃

∆θ
= (𝑂𝑃

3
)(∆θ) = (1)(∆θ) = ∆θ

However, in this case instead of finding an equation focused on angle measure in terms of
and , we aim to find an equation focused on area. To do this, we set the area of theϕ θ

rectangular space on the sphere equal to the area of the rectangular space on the flat
plane. Referring to Diagram 10:

∆𝑢 × ∆𝑣 = ∆ϕ 𝑐𝑜𝑠 θ × ∆θ

As with the cylindrical conformal projection, we focus on finding (corresponding to∆𝑣
length) because the width (corresponding to ) is fixed at —for any given , we∆𝑢 2π ∆𝑢
already know that the parallel of latitude as a whole has to distort to end up fitting ,2π
and it is that we need to determine. As a result, we can replace with , and∆𝑣 ∆𝑢 ∆ϕ
simplify accordingly:

∆ϕ × ∆𝑣 = ∆ϕ 𝑐𝑜𝑠 θ × ∆θ
∆𝑣 = 𝑐𝑜𝑠 θ × ∆θ
∆𝑣
∆θ = 𝑐𝑜𝑠 θ

Letting approach 0, we attain the derivative of :∆θ 𝑣
𝑑𝑣
𝑑θ = 𝑐𝑜𝑠 θ



Integrating, we get:
𝑣(θ) = 𝑠𝑖𝑛 θ + 𝐶

Since we know that (a latitude of 0 projects to the -axis on the𝑣(0) = 0 𝑢
two-dimensional plane), , and we attain our final projection equations:𝐶 = 0

𝑢 = ϕ
𝑣 = 𝑠𝑖𝑛 θ

For a potential spherical coordinate :(ϕ,  θ) = ( π
3 , π

4 )

𝑢 = π
3 ≈ 1. 047

𝑣 = 𝑠𝑖𝑛( π
4 ) ≈ 0. 707

Spherical coordinates project to Cartesian coordinates(ϕ,  θ) = ( π
3 , π

4 )

.(1. 047,  0. 707)

The major advantage of an equal-area projection is simply its defining property—it
preserves area. For a projection of the Earth's surface, an equal-area projection is not
ideal for navigation because it doesn’t preserve angle like the conformal one. However, it
does accurately display the relative sizes of different portions of the map. For example,
while the Mercator (cylindrical conformal) projection highlights Greenland as a
comparable size to the entire African continent, the Lambert cylindrical equal-area
projection highlights the true relative sizes, and Greenland is much smaller than Africa.

To connect this to the mathematics we have done, we can see that as compared to the
latitude of for the cylindrical conformal projection that maps to , theπ

4 𝑣 = 0. 383

equal-area projection maps the same latitude higher to . This highlights the𝑣 = 0. 707
distortion of area in the conformal projection resulting from an effort to preserve angle,
while for the equal-area projection, is higher on the map (ex. Greenland is compressed𝑣
and maps to the very top of the map). Of course, this is reversed for a point in the
southern hemisphere, with the equal-area projection at a lower latitude than the
conformal.

An application of the map is a geocode system. Geocoding a location is the process of
assigning a description to that particular place; this can be by address, coordinates, or
even a description of the features of that location. The creation of one type of geocode
system (creating a description for every point on the earth) involves a grid splitting of the
Earth (or a region of the Earth) into portions of equal area, also known as DGGS cells.
For this, an equal-area projection is needed. A geocode system can be useful for
identifying locations by feature and data analysis, for example businesses hoping to
optimize their product distribution systems, or keeping record of the population of areas.



7.1
.

7.2
.

Summary of Real World Value
As showcased throughout this paper, there are a multitude of real world
applications of three-dimensional to two-dimensional projections, each of
which depends on the type of projection. Besides maps of the Earth, where
conformal projections are used to optimize navigation and equal-area
projections are used for analysis of countless data parameters, projection can
also be used to map other planetary bodies, such as the moon. Understanding
the use of geometry and calculus in these projections highlights the not only
extensive, but indispensably crucial application of mathematics in the real
world.

Limitations
It is important to note that many of these applications involve, in reality,
much more complex considerations. As a major example, any projection
discussed in this paper assumes that the Earth is an exact sphere. However,
this is not true; the shape of Earth is in fact irregular, meaning that the
projections must be tweaked in order to accurately represent the Earth’s
surface. Additionally, technology, such as the Global Positioning System
(GPS) and advanced satellite imagery, has greatly advanced our
understanding of the Earth’s surface, making several of these projections
obsolete, as more accurate maps are able to be pieced together. Nonetheless,
the importance of the mathematics of projection is impossible to deny, even in
the modern era.

7
.

Conclusion
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